We are called to make a healthy difference in people's lives.

UNDERSTANDING EXTENDED SPECTRUM BETA-LACTAMASE PRODUCING ORGANISMS (ESBLS)

Tony Maanum, PharmD PGY-1 Acute Care Pharmacy Resident Essentia Health - Fargo

© Essentia Health 2022

Disclosure

Tony Maanum has no relevant financial relationships with ineligible companies to disclose. None of the planners, faculty, and others in control of content of this educational activity have relevant financial relationships with ineligible companies to disclose.

Learning Objectives

- 1. Understand what are ESBL enzymes
- 2. Recognize how to detect ESBL organisms
- 3. Understand what makes ESBL organisms more difficult to treat

Abbreviations

- AMR antimicrobial resistance
- AMS antimicrobial stewardship
- CDC Center for Disease Control
- CFU colony forming units
- CRE carbapenem resistant enterobacterales
- CTX-M cefotaximase-Munich
- C-UTI complicated urinary tract infection
- DOT duration of therapy
- ESBL extended spectrum βlactamase enterobacterales

- GU genitourinary
- IDSA Infectious Disease Society of America
- MDRO Multi-Drug Resistant Organisms
- MIC minimum inhibitory concentration
- Pip/Tazo piperacillin-tazobactam
- RBC red blood cells
- SMX/TMP sulfamethoxazole-trimethoprim
- UA urinary analysis
- UTI urinary tract infection
- WBC white blood cells

Drug Classes Discussed

- Cephamycins
 - Cefoxitin
 - Cefotetan
- Aminopenicillins
 - Amoxicillin
 - Ampicillin
- Fluoroquinolones
 - Levofloxacin
 - Ciprofloxacin
 - Moxifloxacin

- Carbapenems
 - Meropenem
 - Imipenem-Cilastatin
 - Ertapenem
- β-Lactam + β-Lactamase Inhibitor Combinations
 - Ceftazidime-Avibactam
 - Meropenem-Vaborbactam
 - Imipenem-Cilastatin-Relebactam
 - Ceftolozane-Tazobactam

Patient Case #1

HPI: TR is a 64-year-old male who presents with flank pain and urinary frequency. His urinary analysis and culture are shown below.

URINALYSIS, REFLEX TO CULTURE Collection Time: 08/30/23 11:27 PM Specimen: Urine CVMS		
Result	Value	Ref Range
Urine Color	Yellow	Straw, Yellow, Amber
Urine Appearance	Turbid (A)	Clear
Urine Specific Gravity	1.019	1.003 - 1.035
Urine pH	5.0	5.0 - 8.0
Urine Glucose	Negative	Negative
Urine Ketones	Negative	Negative
Urine Protein	>=500 (A)	Negative, Trace mg/dL
Urine Nitrites	Positive (A)	Negative
Urine Leukocyte Esterase	Large (A)	Negative
Urine WBC's	>182 (A)	0 - 8 /HPF
Urine RBC's	>182 (A)	0 - 3 /HPF
Urine Squamous Epithelial Cells	None Seen	/HPF
Urine Bacteria	Occasional (A)	None Seen /HPF

Specimen: Urine Organism: > 100,000 CFU/mL *E. coli*

Antimicrobial	MIC	Interpretive category
Nitrofurantoin	<32	Sensitive
SMX/TMP	<2/38	Sensitive
Ceftriaxone	>2	Resistant
Cefepime	<2	Sensitive
Pip/Tazo	<16/4	Sensitive
Meropenem	<1	Sensitive

ESBL Resistance CTX-M Gene

Detected!

Question #1

What would be the most appropriate choice of antibiotic for TR?

- 1. Pip/Tazo
- 2. Cefepime
- 3. Nitrofurantoin
- 4. Meropenem
- 5. SMX/TMP

Antimicrobial	MIC	Interpretive category
Nitrofurantoin	<16	Sensitive
SMX/TMP	<2/38	Sensitive
Ceftriaxone	>2	Resistant
Cefepime	<2	Sensitive
Pip/Tazo	<8/4	Sensitive
Meropenem	<1	Sensitive

ESBL Resistance CTX-M Gene

Detected!

Patient Case #2

HPI: CT is 35-year-old female who presents with pain while urinating and reports that her urine has been cloudy. Her UA and culture are shown below.

URINALYSIS, REFLEX TO CULTURE

Collection Time: 08/28/23 10:44 PM

Specimen: Urine CVMS		
Result	Value	Ref Range
Urine Color	Yellow	Straw, Yellow, Amber
Urine Appearance	Cloudy (A)	Clear
Urine Specific Gravity	1.019	1.003 - 1.035
Urine pH	6.0	5.0 - 8.0
Urine Glucose	Negative	Negative
Urine Ketones	Trace (A)	Negative
Urine Protein	Negative	Negative, Trace mg/dL
Urine Nitrites	Positive (A)	Negative
Urine Leukocyte Esterase	Small (A)	Negative
Urine WBC's	57 (A)	0 - 8 /HPF
Urine RBC's	1	0 - 3 /HPF
Urine Squamous Epithelial Cells	Rare	/HPF
Urine Renal Epithelial Cells	Rare	None Seen, Rare /HPF
Urine Bacteria	Rare (A)	None Seen /HPF
Urine Mucous	Present (A)	None Seen

Specimen: Urine Organism: > 100,000 CFU/mL Klebsiella pneumoniae

Antimicrobial	MIC	Interpretive category
SMX/TMP	>4/76	Resistant
Ceftriaxone	>2	Resistant
Cefepime	<2	Sensitive
Meropenem	<1	Sensitive

Question #2

What is a marker in this bacteria that might indicate it is ESBL?

- 1. Ceftriaxone MIC
- 2. Bactrim MIC
- 3. Cefepime sensitive
- 4. Klebsiella pneumoniae

Specimen: Urine Organism: > 100,000 CFU/mL *Klebsiella pneumoniae*

Antimicrobial	MIC	Interpretive category
SMX/TMP	>4/76	Resistant
Ceftriaxone	>2	Resistant
Cefepime	<2	Sensitive
Meropenem	<1	Sensitive

Patient Case #3

HPI: DM is a 52-year-old female who has been in the hospital for 7 days. Over the past 6 hours she has become lethargic and pale. Her blood pressure has dropped to 72/54 and her WBC has increased to 17.2. Blood cultures were ordered, and the results are provided.

Blood Culture:		Escherichia coli
Antimicrobial	MIC	Interpretive category
Levofloxacin	<1	Sensitive
SMX/TMP	<2/38	Sensitive
Ceftriaxone	>2	Resistant
Cefepime	>16	Resistant
Pip/Tazo	>32/4	Resistant
Meropenem	>4	Resistant
CRE Resistance OXA- 48 Gene	Dete	cted!

Question #3

What would be the most appropriate choice of antibiotic for DM?

- 1. Meropenem
- 2. Meropenem/vaborbactam
- 3. Ceftazidime/avibactam
- 4. Levofloxacin
- 5. SMX/TMP

Blood Culture:		Escherichia coli
Antimicrobial	MIC	Interpretive category
Levofloxacin	<1	Sensitive
SMX/TMP	<2/38	Sensitive
Ceftriaxone	>2	Resistant
Cefepime	>16	Resistant
Pip/Tazo	>32/4	Resistant
Meropenem	>4	Resistant
CRE Resistance OXA- 48 Gene	Dete	cted!

We are called to make a healthy difference in people's lives.

Antimicrobial Resistance

Development of Resistance

- In 1945 during his Nobel prize acceptance speech, Alexander Fleming warned about resistance development due to inappropriate antibiotic use
- The CDC estimates that 47 million courses of antibiotics are prescribed unnecessarily every year
- It is estimated that 30% of antibiotics prescribed in the ambulatory setting are not indicated

Rapid Rates of Resistance

Antibiotic approved		Resistance development	
Penicillin 1	194	Penicillin-resistant E. coli	1940
Cefotaxime 0	198	ESBL E. coli 1983	
Ceftazidime 5	198	ESBL Klebsiella pneumoniae 1987	
Imipenem/cilastatin	1985	KPC-producing K. pneumoniae 1996	
Ceftazidime/avibactam 5	201	Ceftazidime/avibactam-resistant enterobacterales	2015
Cefiderocol 9	201	Cefiderocol-resistant enterobacterales	2020

Cost of Antimicrobial Resistance

- Deaths associated with antimicrobial resistance were estimated to be 4.95 million people in 2019
- Deaths directly attributed to antimicrobial resistance were estimated to be 1.27 million people in 2019
- Annual cost due to AMR for the United States is estimated to be \$20 billion every year

Prevention of MDRO Spread

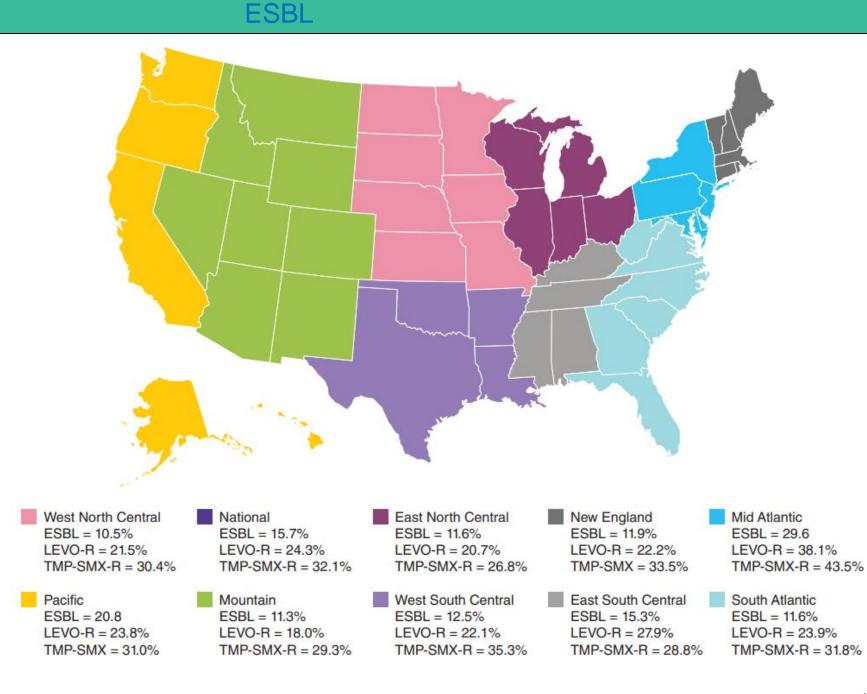
- Standard precautions for all MDRO

 Good hand hygiene
 Gloves
- Contact precautions
 - \odot Gowns + gloved for staff and visitors
 - Single patient rooms
 - $_{\odot}$ Duration is a more conflicted topic
- Difficult to track spread

o Contacted patients will likely have no signs

Extended Spectrum β-Lactamase Producing Enterobacterales (ESBL)

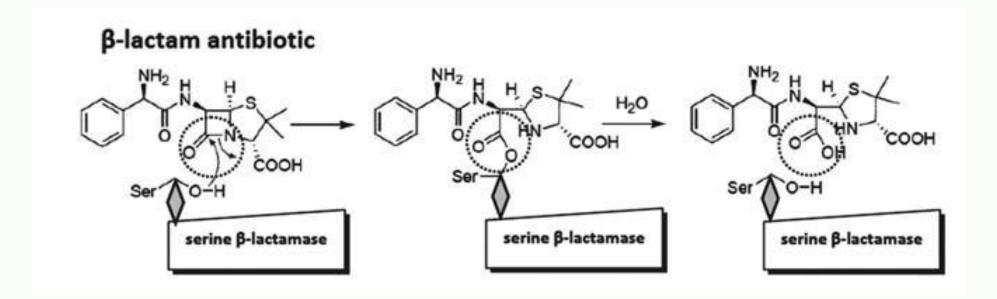
Background


Rates grew by 53% from 2012 to 2017 and continuing to rise

Listed as a serious threat on CDC antibiotic resistance threat report

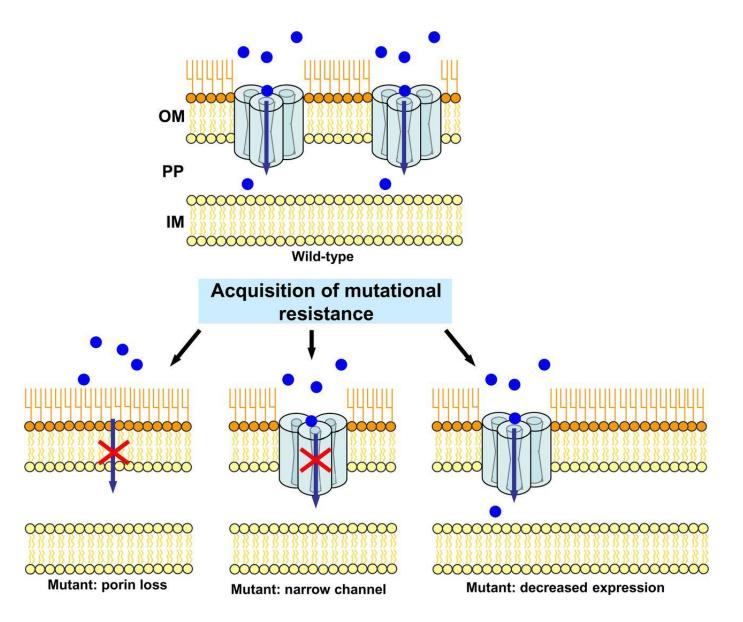
Estimated 197,400 cases in 2019

Estimated mortality rate of 4.6% based on 2019 CDC data


ESBL Resistance Patterns

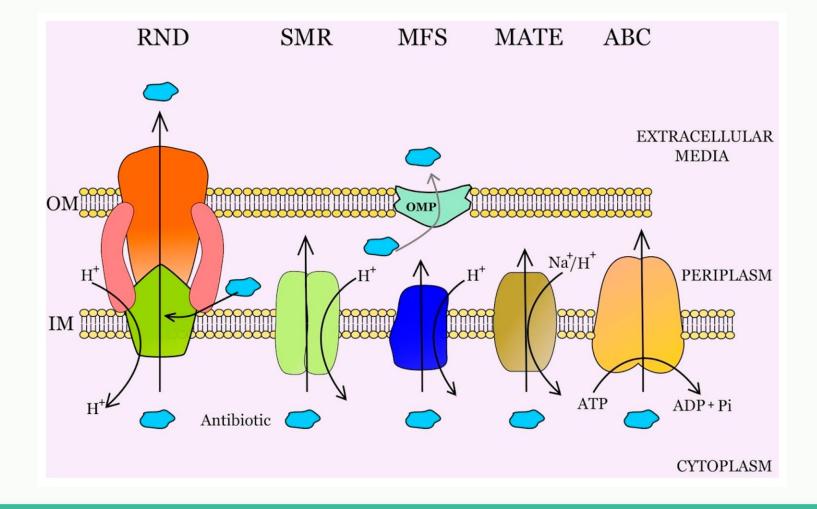
Mechanisms & Genes

- β-lactamase enzymes deactivate most β-lactams
- CTX-M, TEM, SHV, OXA are common β -lactamase enzymes around the world
- CTX-M-15 is the most commonly seen β -lactamase enzyme in the United States
- Over 300 different or variations of β-lactamase enzymes that have been discovered


Mechanism of β-Lactamase

ESBL

© Essentia Health 2022 Olszańska, Dorota & Zórawski, Marcin & Hauschild, Tomasz & Wieczorek, Piotr & Sacha, Pawel & Tryniszewska, Elzbieta. (2008). Metallo-beta-lactamases of Pseudomonas aeruginosa-a novel mechanism resistance to beta-lactam antibiotics. Folia Histochemica et Cytobiologica. 46. 10.5603/4440.


Mechanism of Resistance: Membrane Permeability

ESBL

Mechanism of Resistance: Efflux Pumps

ESBL

ESBL

Sensitivities

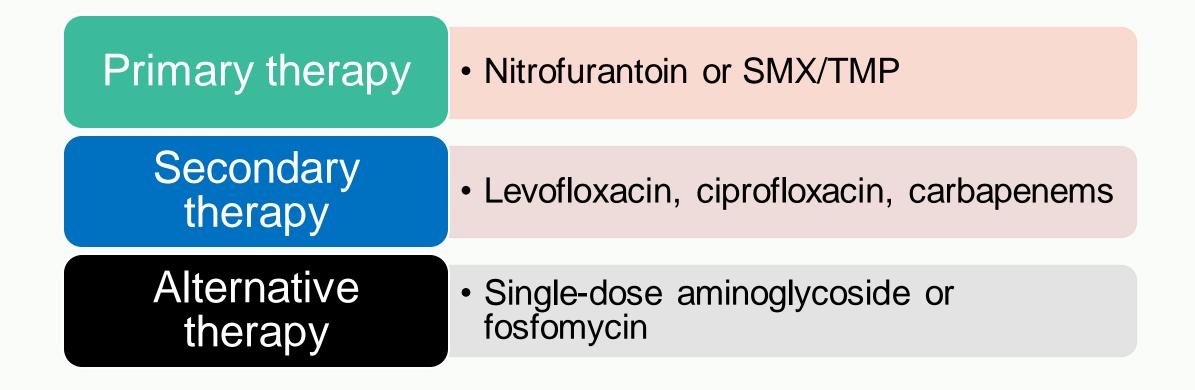
- ESBL genes can be tested
- Ceftriaxone MIC > 2
- Resistance to most penicillins, cephalosporins, and aztreonam
- Carbapenem activity is preserved
- Many ESBL have poly-resistance

Most Common ESBL Producing Bacteria

ESBL

Escherichia coli

Klebsiella pneumoniae


Klebsiella oxytoca

Proteus mirabilis

Any gram-negative bacteria

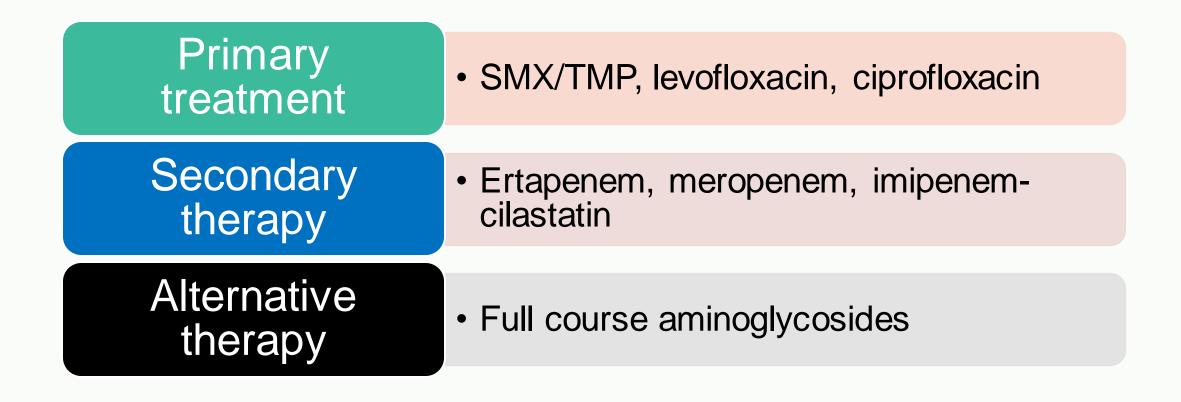
© Essentia Health 2022

Cystitis Treatment

© Essentia Health 2022

Fosfomycin Pearl

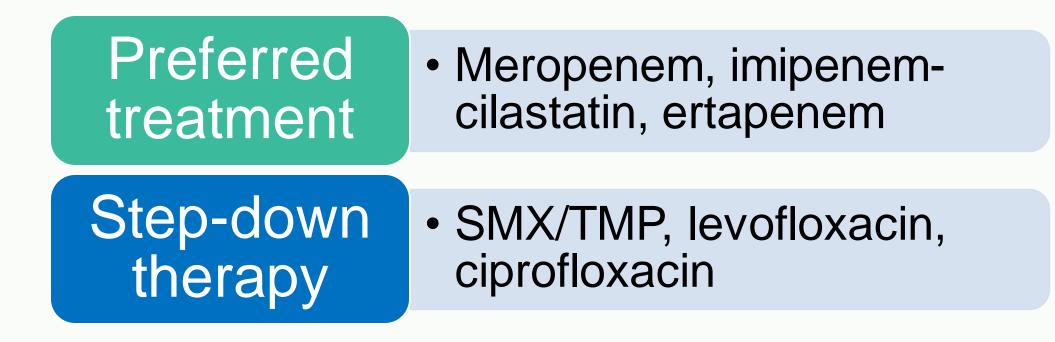
- Fosfomycin should only be used in ESBL E. coli
- Most other bacteria carry a fosA hydrolase gene
- This enzyme will confer fosfomycin resistance to the bacteria by conjugating glutathione to fosfomycin


Widespread Fosfomycin Resistance in Gram-Negative Bacteria Attributable to the Chromosomal *fosA* Gene The Role of *fosA* in Challenges with Fosfomycin Susceptibility Testing of Multispecies Klebsiella pneumoniae Carbapenemase-Producing Clinical Isolates

© Essentia Health 2022

Ito R, Mustapha MM, Tomich AD, Callaghan JD, McElheny CL, Mettus RT, Shanks RMQ, Sluis-Cremer N, Doi Y. Widespread Fosfomycin Resistance in Gram-Negative Bacteria Attributable to the Chromosomal fosA Gene. mBio. 2017 Aug 29;8(4):e00749-17. doi: 10.1128/mBio.00749-17. PMID: 28851843; PMCID: PMC5574708.

Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van DCuin D, Clancy CJ. Infectious Diseases Society of America Antimicrobial-Resistant Treatment Guidance: Gram-Negative Bacterial Infections. Infectious Diseases Society of America 2023; Version 3.0. Available at https://www.idsociety.org/practice-guideline/amr-guidance/. Accessed September 1st 2023.


Pyelonephritis Treatment

ESBI

© Essentia Health 2022

ESBL Outside the GU System

© Essentia Health 2022

Ertapenem Pearl

© Essentia Health 2022

- Ertapenem should be used with caution in patients with hypoalbuminemia or who are critically ill
- Ertapenem is extremely protein bound which greatly increases its half-life
- This study shows that patients had a 5-times higher risk of mortality when using ertapenem compared to meropenem or imipenem/cilistatin
- Odds Ratio difference was 4.6 in ertapenem compared to 1.2 in imipenem/meropenem
- Significant correlation between ertapenem mortality and low albumin with Odds Ratio 2.45

Association between hypoalbuminemia and mortality among subjects treated with ertapenem versus other carbapenems: prospective cohort study

Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van DCuin D, Clancy CJ. Infectious Diseases Society of America Antimicrobial-Resistant Treatment Guidance: Gram-Negative Bacterial Infectious Diseases Society of America 2023; Version 3.0. Available at https://www.idsociety.org/practice-guideline/amr-guidance/. Accessed September 1st 2023.

Zusman O, Farbman L, Tredler Z, Daitch V, Lador A, Leibovici L, Paul M. Association between hypoalbuminemia and mortality among subjects treated with ertapenem versus other carbapenems: prospective cohort study. Clin Microbiol Infect. 2015 Jan;21(1):54-8. doi: 10.1016/j.cmi.2014.08.003. Epub 2014 Oct 12. PMID: 25636928.

Piperacillin-Tazobactam – Merino Trial

- Compared Pip/Tazo to meropenem for bloodstream infections
- Differences between susceptibilities and clinical results
- Not recommended for use over other agents
- Controversy around results of trial

Effect of Piperacillin-Tazobactam vs Meropenem on 30-Day Mortality for Patients With E coli or Klebsiella pneumoniae Bloodstream Infection and Ceftriaxone Resistance: A Randomized Clinical Trial

© Essentia Health 2022

Harris PNA, Tambyah PA, Lye DC, Mo Y, et al; MERINO Trial Investigators and the Australasian Society for Infectious Disease Clinical Research Network (ASID-CRN). Effect of Piperacillin-Tazobactam vs Meropenem on 30-Day Mortality for Patients With E coli or Klebsiella pneumoniae Bloodstream Infection and Ceftriaxone Resistance: A Randomized Clinical Trial. JAMA. 2018 Sep 11;320(10):984-994. doi: 10.1001/jama.2018.12163. Erratum in: JAMA. 2019 Jun 18;321(23):2370. PMID: 30208454; PMCID: PMC6143100 Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van DCuin D, Clancy CJ. Infectious Disease Society of America Antimicrobial-Resistant Treatment Guidance: Gram-Negative Bacterial Infectious. Infectious Diseases Society of America 2023; Version 3.0. Available at https://www.idsociety.org/practice-guideline/amr-guidance/. Accessed September 1st 2023.

Merino Controversy

- Secondary analysis findings
 - \circ Possibly more resistant pathogens in the pip/tazo group
 - Updated breakpoints where initially susceptible pathogens were actually resistant
 - Findings showed there may not be a difference between treatments, but it is questionable whether the study's power was enough
- Deemed pip/tazo to still be clinically inferior to meropenem based on available evidence

Harris PNA, Tambyah PA, Lye DC, Mo Y, et al; MERINO Trial Investigators and the Australasian Society for Infectious Disease Clinical Research Network (ASID-CRN). Effect of Piperacillin-Tazobactam vs Meropenem on 30-Day Mortality for Patients With E coli or Klebsiella pneumoniae Bioodstream Infection and Ceftriaxone Resistance: A Randomized Clinical Trial. JAMA. 2018 Sep 11;320(10):984-994. doi: 10.1001/jama.2018.12163. Erratum in: JAMA. 2019 Jun 18;321(23):2370. PMID: 30208454; PMCID: PMC6143100 Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van DCuin D, Clancy CJ. Infectious Diseases Society of America Antimicrobial-Resistant Treatment Guidance: Gram-Negative Bacterial Infections. Infectious Diseases Society of America 2023; Version 3.0. Available at https://www.idsociety.org/practice-guideline/Tazobactam-Infections. Infectious Diseases Society of America 2023.

Cefepime and Cephamycins

Cefepime

- May show susceptibilities but not recommended for use
- Studies have shown high failure rates
- More data may be needed to assess true efficacy

Cephamycins

- Not enough data
- Many cephamycins being studies are not available in the US
- Cefoxitin and cefotetan are the most common
- Not recommended

ESBL

β-Lactam-β-Lactamase Inhibitor Combinations and Cefiderocol

- Reserved for carbapenem resistant organisms
 - Meropenem-vaborbactam, ceftazidime-avibactam, imipenem-cilastatinrelebactam, and cefiderocol
- Ceftolozone-tazobactam should be avoided as treatment

Review

- Bacteria & Resistance:
 - E. coli, Klebsiella pneumoniae, Klebsiella oxytoca, Proteus mirabilis
 - CTX-M, TEM, SHV, OXA
- Susceptibility:
 - Ceftriaxone MIC > 2
 - Multi-resistance
- Treatment:
 - Cystitis Nitrofurantoin or SMX/TMP
 - Pyelonephritis SMX/TMP, levofloxacin, ciprofloxacin
 - Other sources Meropenem, imipenem-cilastatin, ertapenem

We are called to make a healthy difference in people's lives.

Carbapenem-Resistant Enterobacterales

(CRE)

© Essentia Health 2022

Background

On CDC urgent threats list

13,100 cases in 2017

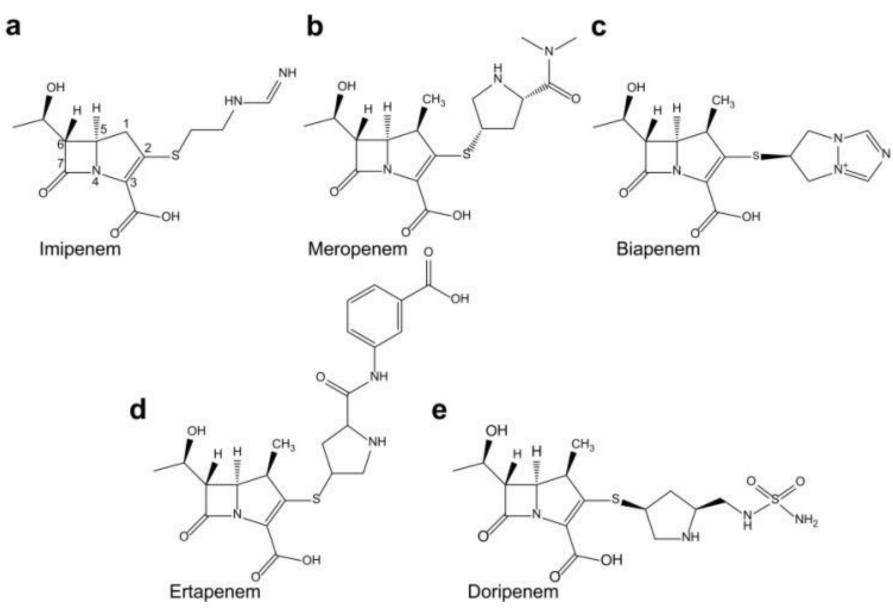
8.4% mortality rate based on their 2017 data

Multiple potential enzymes involved including KPC, NDM, VIM, OXA-48

 \mathbf{CRF}

CRE

Identification


- Enterobacterales with evidence of carbapenem resistance

 Resistant to a carbapenem
 Confirmed carbapenemase gene
- Most common bacteria
 - \circ Enterobacterales
 - Klebsiella spp.
 - Serratia marcescens
 - E. coli

Resistance

- Various mechanisms of resistance
 - Carbapenemase production
 - Membrane permeability alterations
 - \circ Efflux pumps
 - $_{\odot}$ Enhanced ESBL production
- Majority of resistance is carbapenemase producing bacteria
 60% of all CRE cases

Carbapenem Structure

CRE

KPC

- Klebsiella pneumonia carbapenamse (KPC) • Can be more organisms that just K. pneumonia
- Class A carbapenamase
- Most common carbapenemase in US and worldwide
- Preferred therapy
 - Meropenem-vaborbactam, ceftazidime-avibactam, and imipenemcilastatin-relebactam
- Alternative therapy
 - \circ Cefiderocol

NDM

- New Delhi metallo-B-lactamase (NDM)
- Class B carbapenemase
- Commonly in China, Pakistan, India, and Bangladesh
- Preferred therapy
 - Ceftazidime-avibactam in combination with aztreonam
 - Cefiderocol monotherapy

OXA-48

- Oxacillinase (OXA)
- Class D carbapenemase
- Commonly found in Acinetobacter spp. or Pseudomonas aeruginosa
- Commonly in Saudi Arabia, Turkey, Morocco, Egypt, and EU
- Preferred therapy • Ceftazidime-avibactam
- Alternative therapy
 - \circ Cefiderocol

VIM

- Verona integron-encoded metallo-B-lactamase (VIM)
- Class B carbapenemase
- Commonly in Japan, Taiwan, and China
- Preferred therapy
 - Ceftazidime-avibactam in combination with aztreonam
 - Cefiderocol monotherapy

Primary Treatments

Cystitis	 Nitrofurantoin, SMX/TMP, ciprofloxacin, or levofloxacin
Pyelonephritis	SMX/TMP, ciprofloxacin, or levofloxacin
All other sources	 Ceftazidime-avibactam, meropenem-vaborbactam, and imipenem-cilastatin-relebactam Alternative – cefiderocol

CRF

© Essentia Health 2022

Review

- Bacteria:
 - Klebsiella spp., Serratia marcescens, Enterobacterales, E. coli
 - KPC, NDM, OXA-48, VIM
- Identification:
 - Carbepenem resistance
 - Carbapenemase gene
- Treatment:
 - Cystitis Nitrofurantoin, SMX/TMP, fluoroquinolone
 - Pyelonephritis SMX/TMP, levofloxacin, ciprofloxacin
 - Other sources Ceftazidime-avibactam, meropenem-vaborbactam, imipenem-cilastatin-relebactam

We are called to make a healthy difference in people's lives.

IDSA Guidance Document on Gram-negative Resistance

We are called to make a healthy difference in people's lives.

IDSA 2023 Guidance on the Treatment of Antimicrobial Resistant Gram-Negative Infections

Published by IDSA on 6/7/2023. Document is current as of 12/01/22, 7/1/2023

A Focus on Extended-spectrum β-lactamase-Producing Enterobacterales, AmpC β-Lactamase-Producing Enterobacterales, Carbapenem-Resistant Enterobacterales, Pseudomonas aeruginosa with Difficult-to-Treat Resistance, Carbapenem-Resistant Acinetobacter baumannii, and Stenotrophomonas maltophilia

This updated document replaces previous versions of the guidance document.

© Essentia Health 2022

Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van DCuin D, Clancy CJ. Infectious Diseases Society of America Antimicrobial-Resistant Treatment Guidance: Gram-Negative Bacterial Infectious Diseases Society of America 2023; Version 3.0. Available at https://www.idsociety.org/practice-guideline/amr-guidance/. Accessed September 1st 2023.

Key Topics of this Document

- ESBL
- AMP-C
- CRE
- Pseudomonas
- CRAB
- Stenotrophomonas

IDSA Guidance Document

GUIDANCE DOCUMENT CONSIDERATIONS

Applicable in pediatrics

Contains a dosing & MIC guide

© Essentia Health 2022 Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van DCuin D, Clancy CJ. Infectious Diseases Society of America Antimicrobial-Resistant Treatment Guidance: Gram-Negative Bacterial Infections. Infectious Diseases Society of America 2023; Version 3.0. Available at https://www.idsociety.org/practice-guideline/amr-guidance/. Accessed September 1st 2023.

Duration of Therapy

- The duration of therapy should remain the same as a normal infection
 - Resistant bacteria do not require more time to eliminate
- Duration of therapy should begin once appropriate therapy is initiated
 - Exception in cystitis

Transitioning to Oral Therapy

Should not be delayed because of resistance, especially when:

- Susceptibility to an appropriate oral agent is demonstrated
- The patient is hemodynamically stable
- Reasonable source control measures have occurred
- Concerns about insufficient intestinal absorption are not present

IDSA Guidance Document

IV to PO

Inferred Susceptibility
Ampicillin Amoxicillin
Ampicillin/Sulbactam 📥 Amoxicillin/Clavulanate
Cefazolin Cefadroxil, Cephalexin
Ceftriaxone Cefpodoxime, Cefuroxime
Cefepime in No oral conversion
Carbapenems 🗾 No oral conversion

Most treatments discussed do not have inferred susceptibility because oral products are not available. Cefepime, Pip/Tazo, and carbapenems are examples of this along with our broader β -lactam + β -lactamase inhibitor combinations

Utilization of medications that have both formulations may be helpful i.e. ciprofloxacin, levofloxacin, SMX/TMP

We are called to make a healthy difference in people's lives.

Summary & Closing Remarks

Review

- 1. Understand what are ESBL enzymes
- 2. Recognize how to detect ESBL organisms
- 3. Understand what makes ESBL organisms more difficult to treat

Patient Case #1

HPI: TR is a 64-year-old male who presents with flank pain and urinary frequency. His urinary analysis and culture are shown below

URINALYSIS, REFLEX TO CULTURE Collection Time: 08/30/23 11:27 PM Specimen: Urine CVMS		
Result	Value	Ref Range
Urine Color	Yellow	Straw, Yellow, Amber
Urine Appearance	Turbid (A)	Clear
Urine Specific Gravity	1.019	1.003 - 1.035
Urine pH	5.0	5.0 - 8.0
Urine Glucose	Negative	Negative
Urine Ketones	Negative	Negative
Urine Protein	>=500 (A)	Negative, Trace mg/dL
Urine Nitrites	Positive (A)	Negative
Urine Leukocyte Esterase	Large (A)	Negative
Urine WBC's	>182 (A)	0 - 8 /HPF
Urine RBC's	>182 (A)	0 - 3 /HPF
Urine Squamous Epithelial Cells	None Seen	/HPF
Urine Bacteria	Occasional (A)	None Seen /HPF

Specimen: Urine Organism: > 100,000 CFU/mL *E. coli*

Antimicrobial	MIC	Interpretive category
Nitrofurantoin	<32	Sensitive
SMX/TMP	<2/38	Sensitive
Ceftriaxone	>2	Resistant
Cefepime	<2	Sensitive
Pip/Tazo	<16/4	Sensitive
Meropenem	<1	Sensitive

ESBL Resistance CTX-M Gene

Question #1

What would be the most appropriate choice of antibiotic for TR?

- 1. Pip/Tazo
- 2. Cefepime
- 3. Nitrofurantoin
- 4. Meropenem
- 5. SMX/TMP

Antimicrobial	MIC	Interpretive category
Nitrofurantoin	<16	Sensitive
SMX/TMP	<2/38	Sensitive
Ceftriaxone	>2	Resistant
Cefepime	<2	Sensitive
Pip/Tazo	<8/4	Sensitive
Meropenem	<1	Sensitive

ESBL Resistance CTX-M Gene

Question #1 Rationale

Pyelonephritis Treatment		Antimicrobial	MIC	Interpretive category		
				Nitrofurantoin	<16	Sensitive
_	Primary treatment	 SMX/TMP, levofloxacin, ciprofloxacin 		SMX/TMP	<2/38	Sensitive
	Secondary	· Ertanonom marananam iminanam		Ceftriaxone	>2	Resistant
	therapy	 Ertapenem, meropenem, imipenem- cilastatin 		Cefepime	<2	Sensitive
	Alternative	. Full course emineral vessides		Pip/Tazo	<8/4	Sensitive
Full course aminoglycosides			Meropenem	<1	Sensitive	

Organism: > 100,000 CFU/mL E. coli

ESBL Resistance CTX-M Gene

Patient Case #2

URINALYSIS, REFLEX TO CULTURE

 HPI: CT is 35-year-old female who presents with pain while urinating and reports that her urine has been cloudy. Her UA and culture are shown below

Collection Time: 08/28/23 10:44 PM Specimen: Urine CVMS	n	
Result	Value	Ref Range
Urine Color	Yellow	Straw, Yellow, Amber
Urine Appearance	Cloudy (A)	Clear
Urine Specific Gravity	1.019	1.003 - 1.035
Urine pH	6.0	5.0 - 8.0
Urine Glucose	Negative	Negative
Urine Ketones	Trace (A)	Negative
Urine Protein	Negative	Negative, Trace mg/dL
Urine Nitrites	Positive (A)	Negative
Urine Leukocyte Esterase	Small (A)	Negative
Urine WBC's	57 (A)	0 - 8 /HPF
Urine RBC's	1	0 - 3 /HPF
Urine Squamous Epithelial Cells	Rare	/HPF
Urine Renal Epithelial Cells	Rare	None Seen,
		Rare /HPF
Urine Bacteria	Rare (A)	None Seen /HPF
Urine Mucous	Present (A)	None Seen

Specimen: Urine Organism: > 100,000 CFU/mL Klebsiella pneumoniae

Antimicrobial	MIC	Interpretive category
SMX/TMP	>4/76	Resistant
Ceftriaxone	>2	Resistant
Cefepime	<2	Sensitive
Meropenem	<1	Sensitive

Question #2

What is a marker in this bacteria that might indicate it is ESBL?

- 1. Ceftriaxone MIC
- 2. Bactrim MIC
- 3. Cefepime sensitive
- 4. Klebsiella pneumoniae

Specimen: Urine Organism: > 100,000 CFU/mL *Klebsiella pneumoniae*

Antimicrobial	MIC	Interpretive category
SMX/TMP	>4/76	Resistant
Ceftriaxone	>2	Resistant
Cefepime	<2	Sensitive
Meropenem	<1	Sensitive

Question #2 Rationale

Sensitivities

• A marker to consider ESBL is if ceftriaxone MICs are greater than or equal to 2, but there can be other causes

Most Common ESBL Producing Bacteria

Escherichia coli

Klebsiella pneumoniae

Klebsiella oxytoca

Proteus mirabilis

Antimicrobial	MIC	Interpretive category
SMX/TMP	>4/76	Resistant
Ceftriaxone	>2	Resistant
Cefepime	<2	Sensitive
Meropenem	<1	Sensitive

Organism: > 100,000 CFU/mL Klebsiella pneumoniae

Patient Case #3

HPI: DM is a 52-year-old female who has been in the hospital for 7 days. Over the past 6 hours she has become lethargic and pale. Her blood pressure has dropped to 72/54 and her WBC has increased to 17.2. Blood cultures were ordered, and the results are provided.

Blood Culture:		Escherichia coli
Antimicrobial	MIC	Interpretive category
Levofloxacin	<1	Sensitive
SMX/TMP	<2/38	Sensitive
Ceftriaxone	>2	Resistant
Cefepime	>16	Resistant
Pip/Tazo	>32/4	Resistant
Meropenem	>4	Resistant
CRE Resistance OXA- 48 Gene	Dete	ected!

Question #3

What would be the most appropriate choice of antibiotic for DM?

- 1. Meropenem
- 2. Meropenem/vaborbactam
- 3. Ceftazidime/avibactam
- 4. Levofloxacin
- 5. SMX/TMP

Blood Culture:		Escherichia coli
Antimicrobial	MIC	Interpretive category
Levofloxacin	<1	Sensitive
SMX/TMP	<2/38	Sensitive
Ceftriaxone	>2	Resistant
Cefepime	>16	Resistant
Pip/Tazo	>32/4	Resistant
Meropenem	>4	Resistant
CRE Resistance OXA- 48 Gene	Detected!	

Question #3 Rationale

OXA-48

- Oxacillinase (OXA)
- Class D carbapenemase
- Commonly found in Acinetobacter spp. or Pseudomonas aeruginosa
- Commonly in Saudi Arabia, Turkey, Morocco, Egypt, and EU
- Alternative therapy • Cefiderocol

Antimicrobial	MIC	Interpretive category
Levofloxacin	<1	Sensitive
SMX/TMP	<2/38	Sensitive
Ceftriaxone	>2	Resistant
Cefepime	>16	Resistant
Pip/Tazo	>32/4	Resistant
Meropenem	>4	Resistant

CRE Resistance OXA-48 Gene

Resources

- 2019 antibiotic resistance threats report. Centers for Disease Control and Prevention. November 23, 2021. Accessed August 20, 2023. https://www.cdc.gov/drugresistance/biggest-threats.html#extend.
- Blanco P, Hernando-Amado S, Reales-Calderon JA, Corona F, Lira F, Alcalde-Rico M, Bernardini A, Sanchez MB, Martinez JL. Bacterial Multidrug Efflux Pumps: Much More Than Antibiotic Resistance Determinants. Microorganisms. 2016; 4(1):14. https://doi.org/10.3390/microorganisms4010014
- Bush K, Bradford PA. β-Lactams and β-Lactamase Inhibitors: An Overview. Cold Spring Harb Perspect Med. 2016 Aug 1;6(8):a025247. doi: 10.1101/cshperspect.a025247. PMID: 27329032; PMCID: PMC4968164.
- CDC. Antibiotic Resistance Threats in the United States, 2019
- Critchley IA, Cotroneo N, Pucci MJ, et al. The burden of antimicrobial resistance among urinary tract isolates of Escherichia coli in the United States in 2017. PLoS One 2019;14:e0220265. Reprinted under terms and conditions of Creative Commons.
- Elliott ZS, Barry KE, Cox HL, Stoesser N, Carroll J, Vegesana K, Kotay S, Sheppard AE, Wailan A, Crook DW, Parikh H, Mathers AJ. The Role of *fosA* in Challenges with Fosf omy cin Susceptibility Testing of Multispecies Klebsiella pneumoniae Carbapenemase-Producing Clinical Isolates. J Clin Microbiol. 2019 Sep 24;57(10):e00634-19. doi: 10.1128/JCM.00634-19. PMID: 31340992; PMCID: PMC6760957.
- Fernández L, Hancock REW. 2012. Adaptive and Mutational Resistance: Role of Porins and Efflux Pumps in Drug Resistance. Clin Microbiol Rev 25:.https://doi.org/10.1128/cmr.00043-12
- Harris PNA, Tamby ah PA, Ly e DC, Mo Y, et al; MERINO Trial Investigators and the Australasian Society for Infectious Disease Clinical Research Network (ASID-CRN). Effect of Piperacillin-Tazobactam vs Meropenem on 30-Day Mortality for Patients With E coli or Klebsiella pneumoniae Bloodstream Infection and Ceftriaxone Resistance: A Randomized Clinical Trial. JAMA. 2018 Sep 11;320(10):984-994. doi: 10.1001/jama.2018.12163. Erratum in: JAMA. 2019 Jun 18;321(23):2370. PMID: 30208454; PMCID: PMC6143100.
- Ito R, Mustapha MM, Tomich AD, Callaghan JD, McElheny CL, Mettus RT, Shanks RMQ, Sluis-Cremer N, Doi Y. Widespread Fosfomy cin Resistance in Gram-Negative Bacteria Attributable to the Chromosomal *fosA* Gene. mBio. 2017 Aug 29;8(4):e00749-17. doi: 10.1128/mBio.00749-17. PMID: 28851843; PMCID: PMC5574708.
- Jeon JH, Lee JH, Lee JJ, et al. Structural basis for carbapenem-hy droly zing mechanisms of carbapenemases conferring antibiotic resistance. Int J Mol Sci. 2015;16(5):9654-9692. Published 2015 Apr 29. doi:10.3390/ijms16059654
- Meini, Simone & Tascini, Carlo & Cei, Marco & Sozio, Emanuela & Rossolini, Gian. (2019). AmpC β-lactamase-producing Enterobacterales: what a clinician should know. Infection. 47. 10.1007/s15010-019-01291-9.
- Naghavi M, Murray CJL, Ikuta KS, Mestrovic T, Swetschinski L, Sartorius B. Global burden of antimicrobial resistance: essential pieces of a global puzzle Authors' reply. Lancet. 2022;399(10344):2349-2350. doi:10.1016/S0140-6736(22)00947-3
- Olszańska, Dorota & Zórawski, Marcin & Hauschild, Tomasz & Wieczorek, Piotr & Sacha, Pawel & Try niszewska, Elzbieta. (2008). Metallo-beta-lactamases of Pseudomonas aeruginosa--a nov el mechanism resistance to beta-lactam antibiotics.. Folia Histochemica et Cy tobiologica.
 46. 10.5603/4440.
- Prevention and control. Centers for Disease Control and Prevention. November 5, 2015. Accessed April 20, 2024. <u>https://www.cdc.gov/infectioncontrol/guidelines/mdro/prevention-control.html</u>.
- Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van Duin D, Clancy CJ. Infectious Diseases Society of America Antimicrobial-Resistant Treatment Guidance: Gram-Negative Bacterial Infectious Diseases Society of America 2023; Version 3.0. Available at https://www.idsociety.org/practice-quideline/amr-quidance/. Available
- Zusman O, Farbman L, Tredler Z, Daitch V, Lador A, Leibovici L, Paul M. Association between hypoalbuminemia and mortality among subjects treated with ertapenem versus other carbapenems: prospective cohort study. Clin Microbiol Infect. 2015 Jan;21(1):54-8. doi: 10.1016/j.cmi.2014.08.003. Epub 2014 Oct 12. PMID: 25636928.

We are called to make a healthy difference in people's lives.

Questions?

We are called to make a healthy difference in people's lives.

Thank you

tony.maanum@essentiahealth.org

