

Introduction

- Advances in information technology area has enabled smart grids to realize the two-way communication effectively for energy delivery, and allowed seamless integration of renewables. However, The inherent weakness of communication technology has exposed the system to numerous security threats.
- False Data Injection (FDI) attack can disturb the conditions of the grid, state estimation and the energy distribution process seriously.
- In FDI, the attacker may inject malicious packets into the network by either compromising the sensing layers or hijacking the communication channels resulting in incorrect decision making process to trip relays or circuit breakers or other grid state conditions.

Fig. 1 FDI attack scenario in a Smart Grid

Detecting False Data Injection attack in Smart Grids

Zakaria El Mrabet (Ph.D. student) and Dr. Prakash Ranganathan **School of Electrical Engineering and Computer Science (SEECS)**

Goal

machine learning based approach.

Methodology

Data set

region of the United States.

Features

- Date
- Time
- Electricity demand for Household
- Cost per kWh (time-of-use)

Attack model

model the То

(c) Gaussia

The purpose of this research is to detect the false data injection attack (FDI) in Smart Grids by developing a

The data set used in this project includes the electricity demand profiles for seven households for the Midwest

The relevant features selected from this data set are:

Additionally, another feature is included related to the

FDI attack, several membership functions are used to falsify the legitimate data set. Example of these functions are given below:

Machine learning approaches

- of trees.
- Several computed.

Algorithm				
SVM (RBF Kernel)				
SVM (Sigmoid)				
SVM (Polynomial)				
Neural Network (Relu function, 100)				
Neural Network (Logistic function, 100)				
Neural Network (Tanh function, 100)				
Random Forest (10 trees)				

Random Forest (100 trees)

- Volume 67, 2018.

Artificial Neural Network (ANN), Support Vector Machine (SVM), and Random Forest (RF). Different variations are adapted: multiple kernels, different number of neurons, and varying number

performance metrics such as the probability of detection (Pd), the probability of miss detection (Pmd), and the accuracy are

Preliminary Results

Probability of detection	Probability of false alarm	Probability of miss detection	Accuracy
72.7%	1.8%	27.3%	86%
80.5%	12.3%	19.5%	84.3%
66.9%	2.7%	33.1%	82.9%
98.8%	1.4%	1.2%	98.7%
99.4%	3.4%	0.6%	97.9%
98.6%	3.6%	1.4%	97.4%
85.9%	1.1%	14.1%	92.8%
88.2%	0.2%	11.8%	94.3%

Conclusion

The experiment results indicate that ANN is an optimal approach for detecting the falsified injected data over other approaches.

References

Z. E. Mrabet, N. Kaabouch, H. E. Ghazi, and H. E. Ghazi, "Cyber-security in smart grid: Survey and challenges," Computers & Electrical Engineering,

• G. Liang, J. Zhao, F. Luo, S. R. Weller, and Z. Y. Dong, "A Review of False Data Injection Attacks Against Modern Power Systems," IEEE Trans. Smart Grid, vol. 8, no. 4, pp. 1630–1638, Jul. 2017.